Abstract

Linking absorption with emission, the Roosbroeck–Shockley relation (RSR) expresses a fundamental principle of semiconductor optics. Despite its elementary character, the RSR is hardly advocated since it is commonly understood that the relation holds for intrinsic materials only. However, we demonstrate that the RSR reproduces very well the photoluminescence of p-doped GaAs over the temperature range of 5–300 K. The fitting parameters used, such as energy position and doping-induced band gap shrinkage, satisfactorily coincide with the literature. The presented results show that the RSR can have a much broader impact in semiconductor analysis than generally presumed.The paper is dedicated to our friend and mentor Rand R Biggers (1946–2006)

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.