Abstract

The effect of the external charge trap on the photoluminescence blinking dynamics of individual colloidal quantum dots is investigated with a series of colloidal quantum dot-bridge-fullerene dimers with varying bridge lengths, where the fullerene moiety acts as a well-defined, well-positioned external charge trap. It is found that charge transfer followed by charge recombination is an important mechanism in determining the blinking behavior of quantum dots when the external trap is properly coupled with the excited state of the quantum dot, leading to a quasi-continuous distribution of 'on' states and an early fall-off from a power-law distribution for both 'on' and 'off' times associated with quantum dot photoluminescence blinking.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.