Abstract

Photolithography experiments are performed by means of an optical phase mask with electrooptically tunable phase step. The phase mask consists of a 2-dimensional hexagonal lattice of inverted ferroelectric domains fabricated on a z-cut lithium niobate substrate. The electro-optically tunable phase step, between inverted domain, is obtained by the application of an external electric field along the z axis of the crystal via transparent electrodes. The collimated beam of an argon laser passes through the phase mask and the near field intensity patterns, at different planes of the Talbot length and for different values of the applied voltage, are used for photolithographic experiments. Preliminary results are shown and further applications are discussed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call