Abstract

The photoisomerization process of 1,2-diphenylethylene (stilbene) is investigated using the spin-flip density functional theory (SFDFT), which has recently been shown to be a promising approach for locating conical intersection (CI) points (Minezawa, N.; Gordon, M. S. J. Phys. Chem. A2009, 113, 12749). The SFDFT method gives valuable insight into twisted stilbene to which the linear response time-dependent DFT approach cannot be applied. In contrast to the previous SFDFT study of ethylene, a distinct twisted minimum is found for stilbene. The optimized structure has a sizable pyramidalization angle and strong ionic character, indicating that a purely twisted geometry is not a true minimum. In addition, the SFDFT approach can successfully locate two CI points: the twisted-pyramidalized CI that is similar to the ethylene counterpart and another CI that possibly lies on the cyclization pathway of cis-stilbene. The mechanisms of the cis--trans isomerization reaction are discussed on the basis of the two-dimensional potential energy surface along the twisting and pyramidalization angles.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.