Abstract

Here we report on photo-isomerization of azobenzene containing surfactants induced during irradiation with near-infrared (NIR) light in the presence of upconversion nanoparticles (UCNPs) acting as mediator. The surfactant molecule consists of charged head group and hydrophobic tail with azobenzene group incorporated in alkyl chain. The azobenzene group can be reversible photo-isomerized between two states: trans- and cis- by irradiation with light of an appropriate wavelength. The trans-cis photo-isomerization is induced by UV light, while cis-trans isomerization proceeds either thermally in darkness, or can be accelerated by exposure to illumination with a longer wavelength typically in a blue/green range. We present the application of lanthanide doped UCNPs to successfully switch azobenzene containing surfactants from cis to trans conformation in bulk solution using NIR light. Using Tm3+ or Er3+ as activator ions, the UCNPs provide emissions in the spectral range of 450 nm < λem < 480 nm (for Tm3+, three and four photon induced emission) or 525 nm < λem < 545 nm (for Er3+, two photon induced emission), respectively. Especially for UCNPs containing Tm3+ a good overlap of the emissions with the absorption bands of the azobenzene is present. Under illumination of the surfactant solution with NIR light (λex = 976 nm) in the presence of the Tm3+-doped UCNPs, the relaxation time of cis-trans photo-isomerization was increased by almost 13 times compared to thermally induced isomerization. The influence of thermal heating due to the irradiation using NIR light was shown to be minor for solvents not absorbing in NIR spectral range (e.g. CHCl3) in contrast to water, which shows a distinct absorption in the NIR.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call