Abstract

Azopyrazoles are an emerging class of photoswitches, whereas analogous azoimidazole-based switches are unable to draw much attention because of their short cis half-lives, poor cis-trans photoreversion yields, and toxic ultraviolet (UV) light-assisted isomerization. A series of 24 various aryl-substituted N-methyl-2-arylazoimidazoles were synthesized, and their photoswitching performances and cis-trans isomerization kinetics were thoroughly investigated experimentally and theoretically. Para-π-donor-substituted azoimidazoles with highly twisted T-shaped cis conformations showed nearly complete bidirectional photoswitching, whereas di-o-substituted switches exhibited very long cis half-lives (days-years) with nearly ideal T-shaped conformations. This study demonstrates how the electron density in the aryl ring affects cis half-life and cis-trans photoreversion via twisting of the NNAr dihedral angle that can be used as a predictive metric for envisaging and tuning the likely switching performance and half-life of any given 2-arylazoimidazole. By applying this tool, two better-performing azoimidazole photoswitches were engineered. All switches permitted irradiation by violet (400-405 nm) and orange (>585 nm) light for forward and reverse isomerization, respectively, and displayed comparatively high quantum yields and impressive resistance to photobleaching.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.