Abstract
We demonstrate strong interference patterns in the photoionization cross-section of the subvalent subshells of noble gas (NG) endohedral atoms NG@F. This interference is a result of common action of three factors: the effect of neighbouring atomic subshells, reflection of photoelectron waves by the fullerene F shell and resonance modification of the incoming photon beam by the complex effect under the action of the F electrons. We have considered the outer ns-subshells for Ne, Ar, Kr and Xe noble gas atoms. The polarization of the fullerene shell is expressed via the F total photoabsorption cross-section. The photoelectron reflection from the static F potential is taken into account in the frame of the so-called bubble potential which is a spherical δ-type potential. It is assumed that the NG atom is centrally located in the fullerene. It is also assumed in accordance with the available experimental data that the fullerene radius is much bigger than the atomic radius and the thickness of the fullerene shell. These assumptions permit the NG@F photoionization cross-section to be presented as a product of the NG atomic cross-section and two calculated factors that account for polarization of the F electron shell and reflection of photoelectrons by the fullerene static potential.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Physics B: Atomic, Molecular and Optical Physics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.