Abstract

The photoionization microscopy of the Rydberg Rb atom exposed to a continuous infrared radiation laser field is investigated based on the semiclassical open orbit theory. In contrast to the photoionization of the Rydberg hydrogen atom, the ionic core-scattering effect plays an important role in the photoionization of the Rb atom. Due to the core-scattering effect and the laser field, the electron trajectories become chaotic. A huge number of ionization trajectories from the ionic source to the detector plane appear, which makes the oscillatory pattern in the electron probability distribution become much more complicated. The ρ–θ curve on the detector plane exhibits a self-similar fractal structure for the ionization trajectories of the Rydberg Rb atom in the laser field. Due to constructive and destructive quantum interference of different electron trajectories, a series of concentric rings appear in the photoionization microscopy interference patterns on the detector plane. The electron probability density distributions on the detector are found to be changed sensitively with the scaled electron energy and the laser wavelength. Even as the detector plane is located at a macroscopic distance from the photoionization source, the photoionization microscopy interference patterns can be observed clearly. These calculations may provide a valuable contribution to the actual experimental study of the photoionization microscopy of non-hydrogenic Rydberg atom in the laser field.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call