Abstract

ABSTRACT We present a study of the impact of photoionization feedback from young massive stars on the turbulent statistics of star-forming molecular clouds. This feedback is expected to alter the density structure of molecular clouds and affect future star formation. Using the AMUN-Rad code, we first generate a converged isothermal forced turbulent density structure inside a periodic box. We then insert an ionizing source in this box and inject photoionization energy using a two-temperature pseudo-isothermal equation of state. We study the impact of sources at different locations in the box and of different source luminosities. We find that photoionization has a minor impact on the 2D and 3D statistics of turbulence when turbulence continues to be driven in the presence of a photoionizing source. Photoionization is only able to disrupt the cloud if the turbulence is allowed to decay. In the former scenario, the presence of an H ii region inside our model cloud does not lead to a significant impact on observable quantities, independent of the source parameters.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.