Abstract
An analytical expression to calculate the photoionization cross-section of isotropic defects or impurity centers is being proposed by using the time-dependent perturbation theory. The ground-state wave function of the electron captured in the impurity state is described by a three-dimensional isotropic harmonic oscillator and the electron excited state in the continuum conduction band is described by a plane wave. The expression has been obtained considering all multipoles terms in the Hamiltonian, and that the radiation field which interacts with electrons is semi-classical and linearly polarized. This approximation is assumed because the effects of the linear contribution are dominant. The available data of the Al2O3:C and Lu2SiO5:Ce systems are in good agreement with our predictions. Such satisfactory comparison is a strong indication that the present model can be used to provide good predictions of the photoionization cross-section in several areas.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.