Abstract

A detailed investigation of the optical properties of a spherical quantum dot (QD) containing one and two electrons has been performed for cases with and without a hydrogenic impurity. First, the photoionization cross section of both ${D}^{0}$ and ${D}^{\ensuremath{-}}$ impurities in the QD has been calculated for an on-center impurity. Second, the intersublevel optical absorption and oscillator strength between the ground and excited states have been examined based on the computed energies and wave functions. The full numeric matrix diagonalization technique has been employed in determining sublevel energy eigenvalues and their wave functions. The Poisson-Schr\odinger equations have been solved self-consistently in the Hartree approximation. In addition, quantum-mechanical many-body effects have been investigated in the local density approximation. The results are presented as a function of quantum dot radii and photon energies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.