Abstract

Azobenzene (1) and the complex resulting from the incorporation of 1 with cyclodextrin (1/CD) are attractive for light-driven applications such as micromachining and chemical biology tools. The highly sensitive photoresponse of 1 is crucial for light-driven applications containing both 1 and 1/CD to reach their full potential. In this study, we investigated the photoionization and trans-to-cis isomerization of 1/CD induced by one- and two-color two-laser pulse excitation. Photoionization of 1/CD, which was induced by stepwise two-photon absorption, was observed using laser pulse excitation at 266nm. Additionally, simultaneous irradiation with 266 and 532nm laser pulses increased the trans-to-cis isomerization yield (Υt→c) by 27%. It was concluded that the increase in Υt→c was caused by the occurrence of trans-to-cis isomerization in the higher-energy singlet state (Sn), which was reached by S1→Sn transition induced by laser pulse excitation at 532nm. The results of this study are potentially applicable in light-driven applications such as micromachining and chemical biology tools.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call