Abstract

Chemically fueled chemical reaction networks (CRNs) are essential in controlling dissipative self-assembly. A key challenge in the field is to store chemical fuel-precursors or "pre-fuels" in the system that are converted into activating or deactivating fuels in a catalytically controlled CRN. In addition, real-time control over catalysis in a CRN by light is highly desirable, but so far not yet achieved. Here we show a catalytically driven CRN that is photoinitiated with 450 nm light, producing activated monomers that go on to perform transient self-assembly. Monomer activation proceeds via photoredox catalysis, converting the monomer alcohol groups into the corresponding aldehydes that self-assemble into large supramolecular fibers. Monomer deactivation is achieved by organometallic catalysis that relies on pre-fuel hydrolysis to release formate (i.e. the deactivating fuel). Additionally, irradiation with 305 nm light accelerates the release of formate by photo-uncaging the pre-fuel, leading to a factor of ca. 2 faster deactivation of the monomer. Overall, we show transient self-assembly upon visible light photoactivation, and tunable life-times by ultraviolet light.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.