Abstract

Photofragment yield spectra and NO(X(2)Pi(1/2,3/2); v = 1, 2, 3) product vibrational, rotational, and spin-orbit state distributions were measured following NO dimer excitation in the 4000-7400 cm(-1) region in a molecular beam. Photofragment yield spectra were obtained by monitoring NO(X(2)Pi; v = 1, 2, 3) dissociation products via resonance-enhanced multiphoton ionization. New bands that include the symmetric nu(1) and asymmetric nu(5) NO stretch modes were observed and assigned as 3nu(5), 2nu(1) + nu(5), nu(1) + 3nu(5), and 3nu(1) + nu(5). Dissociation occurs primarily via Deltav = -1 processes with vibrational energy confined preferentially to one of the two NO fragments. The vibrationally excited fragments are born with less rotational energy than predicted statistically, and fragments formed via Deltav = -2 processes have a higher rotational temperature than those produced via Deltav = -1 processes. The rotational excitation likely derives from the transformation of low-lying bending and torsional vibrational levels in the dimer into product rotational states. The NO spin-orbit state distribution reveals a slight preference for the ground (2)Pi(1/2) state, and in analogy with previous results, it is suggested that the predominant channel is X(2)Pi(1/2) + X(2)Pi(3/2). It is suggested that the long-range potential in the N-N coordinate is the locus of nonadiabatic transitions to electronic states correlating with excited product spin-orbit states. No evidence of direct excitation to electronic states whose vertical energies lie in the investigated energy region is obtained.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call