Abstract

AbstractThe photopolymerization of bicontinuous microemulsions was simultaneously monitored with differential scanning calorimetry and fluorescence. The kinetics and mechanism of the reaction were studied throughout the entire photopolymerization reaction. The role played by the surfactant in the kinetics and morphology was studied. The nature of the surfactant changed the autoacceleration process and final conversion. The behavior was explained as a result of the differences in the interfacial properties. Anionic cetyltrimethylammonium bromide (CTAB) gave rise to a more flexible interfacial film than anionic sodium dodecyl sulfate (SDS), resulting in competition between the intramolecular and intermolecular reactions in the former systems. As cyclization did not contribute to the increase in the degree of crosslinking, SDS photopolymerization gave solids with a more rigid microstructure. Fluorescence methodology was applied to monitor bicontinuous microemulsion polymerization and to reveal the microstructure and morphology development during photopolymerization. The microemulsion composition was designed to prepare nanoporous, crosslinked materials. Even though the nanostructure of the precursor microemulsions was not retained because of phase separation during polymerization, mesoporous solids were obtained. Their morphologies depended on the nature of the surfactant, and membranes with open cells were successfully prepared with CTAB, whereas more complex morphologies resulted with SDS. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 5291–5303, 2006

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.