Abstract

The photoinitiated unimolecular decomposition of formaldehyde via the H+HCO radical channel has been examined at energies where the S0 and T1 pathways both participate. The barrierless S0 pathway has a loose transition state (which tightens somewhat with increasing energy), while the T1 pathway involves a barrier and therefore a tight transition state. The product state distributions which derive from the S0 and T1 pathways differ qualitatively, thereby providing a means of discerning the respective S0 and T1 contributions. Energies in excess of the H+HCO threshold have been examined throughout the range 1103⩽E†⩽2654 cm−1 by using two complementary experimental techniques; ion imaging and high-n Rydberg time-of-flight spectroscopy. It was found that S0 dominates at the low end of the energy range. Here, T1 participation is sporadic, presumably due to poor coupling between zeroth-order S1 levels and T1 reactive resonances. These T1 resonances have small decay widths because they lie below the T1 barrier. Alternatively, at the high end of the energy range, the T1 pathway dominates, though a modest S0 contribution is always present. The transition from S0 dominance to T1 dominance occurs over a broad energy range. The most reliable value for the T1 barrier (1920±210 cm−1) is given by the recent ab initio calculations of Yamaguchi et al. It lies near the center of the region where the transition from S0 dominance to T1 dominance takes place. Thus, the present results are consistent with the best theoretical calculations as well as the earlier study of Chuang et al., which bracketed the T1 barrier energy between 1020 and 2100 cm−1 above the H+HCO threshold. The main contribution of the present work is an experimental demonstration of the transition from S0 to T1 dominance, highlighting the sporadic nature of this competition.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.