Abstract

Photoinhibition of photosynthesis and growth responses at diffrent light levels (10, 120 and 250 μmol m−2 s−1) were studied in psbA gene mutants R2S2C3 (psbAI gene present) and R2K1 (psbAIIIpsbAIII genes present) of the cyanobacterium Synechococcus sp. PCC 7942 (Anacystis nidulans R2). Mutant R2K1 (possessing form II of the D1 protein of photosystem II) was much more resistant to photoinhibition than the mutant R2S2C3 (possessing form I of the D1 protein). At moderate inhibitory light levels (100 to 300 μmol m−2 s−1) this was largely ascribed to an increased rsistance of the photosystem II reaction cetres possessing form II of the D1 protein. However, at higher light levels the higher resistance mutant R2K1 was assigned to a higher rate of photosystem II repair, i.e. turnover of the D1 protein. Moreover, our results support the hypothesis that photoinhibition of photosystem II and photoinhibitory induced quenching are due to separate processes. Results from growth experiments show that the R2K1 mutant has a slower growth rate than the R2S2C3 mutant but shows an increased survival under high light stress conditions. It is hypothesized that high resistance to photoinhibition, though allowing a better survival under high light, is not advantageous for optimal growth.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.