Abstract

Susceptibility of photosystem II complex (PSII) to photoinhibition and degradation of D1 protein has been described in the chloroplasts of C3 plants but so far, the PSII turnover has not been characterised in any C4 plant, which contains two types of chloroplasts differing biochemically and structurally. In maize (Zea mays L. Oleńka), chloroplasts located in mesophyll (M) develop grana, while bundle sheath (BS) chloroplasts are agranal. In this paper, we report the D1 protein phosphorylation, damage and proteolysis in mesophyll as well as in agranal bundle sheath thylakoids of maize plants. Photoinhibitory treatment (1800 μmol photons m-2 s-1) of isolated thylakoids led to donor side inhibition of PSII electron transport and then to damage of reaction centre in both M and BS thylakoids. Rate of D1 degradation rate was faster in BS than in M thylakoids, and the addition of ATP to incubation medium delayed D1 degradation in both types of thylakoids. Furthermore, we demonstrated that the proteases belonging to FtsH and Deg families were present but their amounts significantly differed in M and BS thylakoids. Protease inhibitor studies revealed that serine- and metallo-proteases were involved in degradation of D1 protein. Apparent existence of D1 degradation cycle and the presence of proteolytic enzymes responsible for this process in BS thylakoids confirm that PSII plays an important role in agranal membranes, and when damaged, D1 can be rapidly degraded to enable PSII repair and restoration in these membranes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call