Abstract

At short times that are faster than dephasing, photoinduced evolution of the vibrational subsystem in an electron-phonon molecular structure depends strongly on the electronic evolution. As the electronic population shifts between the donor and acceptor states, in the diabatic description the state with the largest population determines the equilibrium positions and frequencies of the vibrational modes, which oscillate continuously and without loss of coherence. The vibrational coherence transfer between the electronic states detected recently in a number of systems is described theoretically by application of the quantized Hamiltonian dynamics (QHD) formalism [J. Chem. Phys. 2000, 113, 6557] to the coupled electronic and vibrational degrees of freedom of a model heterodimer. The observed coherent modulation of the frequency of the probe signal is represented with simple analytic and numeric QHD models.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.