Abstract

The Ising spin–orbit coupling could give rise to the spin-triplet Cooper pairs and equal-spin Andreev reflection (AR) in Ising superconductors. Here we theoretically study the valley-dependent equal-spin AR in a ferromagnet/Ising superconductor junction with a circularly polarized light applied to the ferromagnet. Because of the spin-triplet Cooper pairs and the optical irradiation, eight kinds of AR processes appear in the junction, including equal-spin AR and normal AR, the strengths and properties of which strongly depend on the valley degree of freedom. The AR probabilities for the incident electron from the two valleys exhibit certain symmetry with respect to the magnetization angle and the effective energy of light. The equal-spin AR and normal AR present different features and resonant behaviors near the superconducting gap edges. Due to equal-spin-triplet Cooper pairs, not only charge supercurrent but also spin supercurrent can transport in the Ising superconductors. The differential spin conductance for electron injecting from the two valleys can be controlled by the circularly polarized light.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.