Abstract
Investigations of photo-induced structural transformations (PST) and related changes of optical parameters in amorphous chalcogenide layers were further developed towards the establishment of their dependence on the compositional modulation of the material at nanoscale-dimensions (∼3–10 nm) and possible improvement of optical recording parameters as well. Besides the known amorphous–amorphous PST, photo-stimulated interdiffusion and crystallization in multilayer structures were found as a useful method for amplitude-phase optical relief formation. The last two types of PST were influenced by size restrictions and efficiently operated by the composition and by the modulation period of the layered nanocomposite. Experimental evidences were obtained in Se-, AsSe-, Se 0.4Te 0.6-containing layered or quasi zero-dimensional structures based on As 2S 3 or SiO x and MgF 2 matrix. Comparison was made with As 2S 3- and GeS 2-based multicomponent layers, containing Se, Te and Ga.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.