Abstract

Photomechanical molecular crystals can undergo a variety of light-induced motions, including expansion, bending, twisting, and jumping. The use of more complex crystal shapes may provide ways to turn these motions into useful work. To generate such shapes, pH-driven reprecipitation has been used to grow branched microcrystals of the anthracene derivative 4-fluoroanthracenecarboxylic acid. When these microcrystals are illuminated with light of λ=405 nm, an intermolecular [4+4] photodimerization reaction drives twisting and bending of the individual branches. These deformations drive a rotation of the overall crystal that can be repeated over multiple exposures to light. The magnitude and direction of this rotation vary because of differences in the crystal shape, but a typical branched crystal undergoes a 50° net rotation after 25 consecutive irradiations for 1 s. The ability of these crystals to undergo ratchet-like rotation is attributed to their chiral shape.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.