Abstract
We have investigated the dynamics of resonant third-order optical nonlinearity of chemically prepared poly(3-dodecylthiophene) by the degenerate four wave mixing technique using 60 fs pulses at 620 nm. The measured effective value of χ(3) is 5.5×10−11 esu, sixfold smaller than that obtained with 400 fs pulses, emphasizing the pulse width dependence of effective χ(3) when the relaxation time of the photogenerated excitation responsible for the optical nonlinearity is comparable to the pulse width. Within the resolution of the optical pulse, the rise time of the nonlinear response is instantaneous and the dominant decay occurs within 200 fs, revealing that the short time, nonlinear response is derived from the initially photogenerated excitons. A detailed analysis of the total decay behavior is consistent with the polaron dynamics of the conformational deformation model proposed by Su, Schrieffer, and Heeger for a conjugated linear polymer with bond alternation.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.