Abstract

Six termolecular reaction systems comprised of Ru(4,4′-bis(trifluoromethyl)-2,2′-bipyridine)32+, phenols with different para substituents, and pyridine in acetonitrile undergo proton-coupled electron transfer (PCET) upon photoexcitation of the metal complex. Five of these six phenols are found to release in concerted fashion an electron to the ruthenium photooxidant and a proton to the pyridine base. The kinetics for this concerted bidirectional PCET process and its relationship to the reaction free energy were compared to the driving-force dependence of reaction kinetics for unidirectional concerted proton–electron transfer (CPET) between the same phenols and Ru(2,2′-bipyrazine)32+, a combined electron/proton acceptor. The results strongly support the concept of thermodynamic equivalence between separated electron/proton acceptors and single-reagent hydrogen-atom acceptors. A key feature of the explored systems is the similarity between molecules employed for bi- and unidirectional CPET.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call