Abstract

Lignin presents a renewable alternative of fossil feedstock to produce value-added aromatic chemicals. Oxidative cleavage of C−C bonds in lignin is of great importance, but obtaining aromatic monomers in high selectivity under mild conditions is challenging. Herein, we report a novel strategy of photoinduced oxidative C–C cleavage of lignin β–O–4 derivatives using photoredox organocatalysts, among which Mes-10-phenyl-Acr+-BF4– exhibited high yields of aromatic aldehydes and phenyl formate. Besides, mixed binary organic solvents were demonstrated to promote bond cleavage and inhibit over-oxidation side reactions. The absorbance, excitation, and interaction with the lignin model of the photocatalyst in different solvents were investigated by UV-Vis, PL, and CV tests. Furthermore, through mechanism studies, a C-centered radical intermediate was captured, providing evidence for the direct Cα−Cβ bond cleavage mechanism during the reaction. This work presents a new photocatalytic strategy and provides deep insights into the bond cleavage mechanism for lignin valorization.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.