Abstract

Hydroxamic acids have attracted significant attention due to their widespread use in applied chemistry. In this report, a modified Angeli–Rimini method has been achieved via the visible light-mediated catalytic transformation of a variety of heterocyclic, aromatic and aliphatic aldehydes 1a–j to their corresponding hydroxamic acids 2a–j in 81–93% yield. The unique ability of vitamin K3 as a photoredox catalyst to expedite the development of completely new reaction mechanisms and to enable the construction of challenging carbon–nitrogen bonds has been investigated. It is shown for the first time that the vitamin K3 and aldehyde are largely responsible for rapid in situ reduction of Ag+ ions to catalytic photoluminescent Ag nanoclusters that possess a bandgap energy of 2.87 eV and are less than 2 nm in size. A mechanism for this reaction has been proposed and is supported by UV–Vis, TEM, ESI/MS, FT-IR, 1H NMR and 13C NMR analyses. The investigated method utilizes readily available reagents and produces the hydroxamic acids in high yields without the formation of side products, making it simple, practical and cost-effective.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.