Abstract

Organic–inorganic perovskites with a mixed anion composition are widely used in solar cells, light-emitting diodes, and nanophotonic structures. Light nanosources based on resonant perovskite nanoparticles are of particular interest. However, perovskites with such a composition demonstrate the light-induced segregation of anions, which leads to a reversible dynamic rearrangement of the optical properties of a material and photoluminescence spectra. In this work, the photoinduced process of change in optical properties in resonant hybrid perovskite nanoparticles with a mixed anion composition (MAPbBr1.5I1.5, where MA = NH3CH 3 + ) has been studied. Comparison with a similar process in a perovskite thin film with a similar composition has shown that the photoinduced migration of halogen ions in a nanoparticle occurs cyclically. This is due to the competition of two processes: the concentration of ions near the boundaries of the particle and migration caused by the gradient of the density of light-generated electron–hole pairs. This effect in resonant nanoparticles makes it possible to obtain optically tunable nanoantennas.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call