Abstract

Photoalignment technology provides high alignment quality with an exceptional control over the local director of liquid crystals. Because of the reorientation ability of sulfonic azo dye molecules, they offer high azimuthal and polar anchoring energy with a low pretilt angle for the orientation of liquid crystals and liquid crystal composites. In this work, we make use of this approach to align thin film composites of light-emitting semiconductor nanorods dispersed in a liquid crystal polymer into both one-dimensional and two-dimensional microscale patterns. After unidirectional alignment, the patterns are fabricated by a second irradiation with different polarization azimuth and the employment of a photomask. Fluorescence micrographs reveal the nanorod pattern alignment in domain sizes down to 2 μm. Apart from demonstrating the possibility of controlling the orientation of anisotropic nanocrystals with strongly polarized emission on microscopic scale, our results are promising for the fabrication of complex nanostructures for photonic applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call