Abstract

Photoexcitations on a superconductor using ultrafast nir-infrared (NIR) pulses, whose energy is much higher than the superconducting energy gap, are expected to suppress/destroy superconductivity by breaking Cooper pairs and excite quasiparticles from occupied state to unoccupied state far above the Fermi level. This appears to be true only for small pumping fluence. Here we show that the intense NIR pumping has different effect. We perform an intense NIR pump, c-axis terahertz probe measurement on an electron-doped cuprate superconductor Pr$_{0.88}$LaCe$_{0.12}$CuO$_4$ with T$_c$=22 K. The measurement indicates that, instead of destroying superconductivity or exciting quasiparticles, the intense NIR pump drives the system from an equilibrium superconducting state with uniform Josephson coupling strength to a new metastable superconducting phase with modulated Josephson coupling strengths below T$_c$.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.