Abstract

Transition-metal nitrides/nitrenes are highly promising reagents for catalytic nitrogen-atom-transfer reactivity. They are typically prepared in situ upon optically induced N2 elimination from azido precursors. A full exploitation of their catalytic potential, however, requires in-depth knowledge of the primary photo-induced processes and the structural/electronic factors mediating the N2 loss with birth of the terminal metal-nitrogen core. Using femtosecond infrared spectroscopy, we elucidate here the primary molecular-level mechanisms responsible for the formation of a unique platinum(II) nitrene with a triplet ground state from a closed-shell platinum(II) azide precursor. The spectroscopic data in combination with quantum-chemical calculations provide compelling evidence that product formation requires the initial occupation of a singlet excited state with an anionic azide diradical ligand that is bound to a low-spin d8 -configured PtII ion. Subsequent intersystem crossing generates the Pt-bound triplet azide diradical, which smoothly evolves into the triplet nitrene via N2 loss in a near barrierless adiabatic dissociation. Our data highlight the importance of the productive, N2 -releasing state possessing azide ππ* character as a design principle for accessing efficient N-atom-transfer catalysts.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call