Abstract
Charge dynamics in a one-dimensional (1D) Mott insulator was investigated by fs pump-probe reflection spectroscopy on an organic charge-transfer compound, bis(ethylenedithio)tetrathiafulvalene-difluorotetracyanoquinodimethane (ET-F2TCNQ). The analyses of the transient reflectivity changes demonstrate that low-energy spectral weight induced by photocarrier doping is concentrated on a Drude component being independent of the doping density, and midgap state is never formed. Such phenomena can be explained by the concept of spin-charge separation characteristic of 1D correlated electron systems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.