Abstract

The photocatalytic conversion of lignin into value-added chemicals especially those functionalized molecules represent one of the most important strategies for sustainable and environmental-friendly development. Cleavage of C-C bonds in lignin under mild photocatalytic conditions for refining lignin into useful molecules is meaningful but challenging. Meanwhile, the assembly of diverse functional groups into active lignin fragments during the depolymerization is of great challenging. Herein, using cheap iron catalysts under visible light irradiation, the highly selective and efficient cleavage of Cα-Cβ bond in lignin is realized via ligand-to-metal charge transfer (LMCT) and hydrogen atom transfer (HAT) processes. The subsequent divergent functionalization of generated lignin fragment-based radical intermediates enables an efficient formation of diverse functionalized molecules. This method is also effective for cleavage of Cα-Cβ bond in native lignin, yielding two identified benzaldehyde monomers in a total yield of 8.7 wt%.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.