Abstract

Self-assembling peptides are attractive alternatives in the field of biomaterial science due to their variability and biocompatibility. Unfortunately, such peptides have poor solubility, and their purification, synthesis, and overall handling are challenging. Our main objective was to develop a cage peptide design with full control over self-assembly. Theoretically, aggregation can be suppressed by temporally masking the amino acid side chains at critical positions. Taking into account several biological and synthetic requirements, a photosensitive protecting group, p-hydroxy-phenacyl (pHP), was chosen as the "masking" moiety. To test our theory, EAK16-II was chosen as a model self-assembling peptide, and a caged derivative containing photosensitive pHP groups was synthesized. Both spectroscopic and in vitro experiments on A2058 melanoma cells confirmed our hypothesis that the caged-EAK16-II peptide has good solubility and that the hydrogel formed after photolysis results in similar viability and cell aggregate formation of melanoma cells as the native EAK16-II-based hydrogel.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.