Abstract

A simple unexplored strategy was followed to construct ratiometric fluorescence-based sensing system for the detection of dopamine (DA) in human serum. Ratiometric fluorescence system was constructed through bonding energy transfer (TBET) by conjugating carboxyl functionalized CdTe quantum dots (QDs) and amine-capped Carbon quantum dots (CQDs). The photophysical properties of sensing system were characterized by standard methods. Photoluminescence (PL) of sensing system under excitonic wavelength (350 nm) depends on dual emission at 440 and 595 nm that corresponds to CQDs and CdTe QDs respectively. The developed sensing system was utilized for visual determination of DA, an unquenched blue fluorescence of CQDs in ratiometric system reveals the visual color differentiation for DA binding with CdTe QDs among the possible interferences (Alanine, Glycine, Glucose, Sucrose, Urea and Ascorbic acid). The limit of detection (LOD) and quantification (LOQ) was calculated as 8.1 and 27.2 nm respectively by using regression analysis. Photoinduced holes transfer (PHT) might have attributed the possible sensing mechanism for DA that quench the photoluminescence sequentially to enhance the sensing performance of QDs. The matrix interferences and reliability of the developed sensing platform were evaluated by testing DA spiked human serum and the sensing response was found to be field deployable.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call