Abstract
ABSTRACTVinyl benzyl trimethyl ammonium chloride (VBTAC) could be efficiently and stably grafted onto polyester fiber coated with a surfactant polyester (PET) by a photoirradiation‐induced graft polymerization with benzophenone as the photoinitiator without any cografting monomer required. The degree of VBTAC grafting could be controlled simply by the irradiation time and concentration of VBTAC in the monomer solution. The anion‐exchange capacity (AEC) of the PET‐g‐VBTAC fabrics increased with increasing degree of grafting up to 80 ± 5% and then leveled off. The maximum AEC of PET‐g‐VBTAC was 2.2 mequiv/g; this was similar to that of a commercial anion‐exchange resin (2.16 ± 0.04 mequiv/g) and much higher than those of nylon‐g‐VBTAC–2‐hydroxyethyl methacrylate fabrics (≤1.0 mequiv/g) prepared with a conventional cografting system. The grafted fabric was characterized by Fourier transform infrared spectroscopy, thermogravimetric analysis, and scanning electron microscopy studies, and the sorption selectivity for anions and regeneration efficiency were estimated. The results suggest that the grafting system, in which VBTAC alone was grafted onto PET fiber coated with surfactant, was more practical and effective for the preparation of the VBTAC‐containing anion exchanger, and the resulting PET‐g‐VBTAC fabrics could be used as an effective anion exchanger. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015, 132, 41674.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.