Abstract

We have investigated photoinduced ordering transformation of a photochromic terthiophene derivative by scanning tunneling microscopy (STM) at the trichlorobenzene (TCB)/highly oriented pyrolytic graphite (HOPG) interface. The open-ring and annulated isomers of the terthiophene formed two-dimensional molecular orderings with different patterns while the closed-ring isomer did not form any ordering. The ordering of the open-ring isomer exhibited polymorphism depending on the concentration of supernatant solution. Upon UV light irradiation to a solution of the open-ring isomer or the closed-ring isomer, ordering composed of the annulated isomer was irreversibly formed. Upon visible light irradiation or thermal stimulus to the closed-ring isomer, the two kinds of polymorph composed of the open-ring isomer were formed due to the polymorphism. By controlling photochromism and polymorphism among four states made of three photochemical isomers, four-state three-step transformation was achieved by in situ photoirradiation from a solution of the closed-ring isomer (no ordering) into the ordering composed of the open-ring isomer (ordering α and β) followed by the orderings composed of the annulated isomer (ordering γ).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.