Abstract

An analytical strategy, for the determination of tetracyclines (TCs), based on a HPLC system coupled with a photo-reactor followed by post-column derivatization was developed. Higher fluorescence emission after coupling the resulting photo-fragments with magnesium ions was observed for the determination of minocycline (MC), epitetracycline (ETC), tetracycline (TC) and doxycycline (DC). The manifold included a HPLC system with a photo-reactor (PTFE tubing helically coiled around a low-pressure mercury lamp), a mixing T-piece and a fluorescence detector. The derivatization reagent was delivered at 0.5 mL min −1 by a pump. After HPLC separation using a gradient system with a mobile phase containing oxalic acid 0.02 M and acetonitrile, TCs were irradiated for 60 s, and the resulting photo-fragments were mixed with the post-column derivatization reagent, and the magnesium derivatives of TCs were detected by fluorimetry ( λ exc 386 nm, λ em 500 nm). The results obtained showed a significant increase of sensitivity due to photodegration of TCs, 45.4%, 37.6% and 25.3% for MC, TC and ETC respectively. For DC an increase of only 1.5% was observed. The developed method was successfully applied to TCs determination in hospital and municipal wastewater samples using solid phase extraction with Oasis HLB cartridges. The LOQs were 0.25, 0.15, 01 and 0.25 μg L −1 for TC, ETC, MC and DC, respectively. The recovery values oscillated between 107.1% and 92.4% for fortification of 2.5 μg L −1 of each antibiotic.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.