Abstract

Photoinduced energy- and electron-transfer processes of donor-σ-acceptor molecules composed of [1,2,4,5-tetrakis((E)-2-(50-hexyl-2,20-bithiophen-5-yl)vinyl)benzene] (HPBT) with one, two and four entities of perylenediimide (PDI) forming HPBT–PDIn (n=1, 2 and 4) have been examined in this article by utilizing steady-state absorption and emission, computational, electrochemical and time-resolved transient absorption studies. The HPBT–PDIn molecules are connected through long non-conjugated σ-bonds that may prevent the direct overlap of HPBT and PDI energy levels. Electrochemical studies suggest the exothermic photoinduced electron transfer processes when HPBT and PDI are selectively excited. Upon excitation the HPBT entity, the steady-state emission and femtosecond transient absorption measurements of HPBT–PDIn revealed an efficient energy transfer from the singlet excited HPBT to PDI with time constants on the order of ∼1010s−1. The energy donor–acceptor distance, r=∼22Å, is calculated from the experimental energy transfer rates using Förster theory and from the MO calculations using ab initio B3LYP/6-311G method. By selective excitation the PDI entity, the electron-transfer processes take place from HPBT to the singlet excited PDI with time constants on the order of ∼108s−1. The slow rates of electron transfer and energy transfer processes indicated that these molecules tend to take conformations with relatively long distance between HPBT and PDI entities.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.