Abstract

The recent success of lead halide perovskites is given by their optimal primary optoelectronic properties relevant for photovoltaic and, more in general, for optoelectronic applications. However, a lack of knowledge about the nature of instabilities currently represents a major challenge for the development of such materials. Here we investigate the luminescence properties of polycrystalline thin films of lead halide perovskites as a function of the excitation density and the environment. First we demonstrate that in an inert environment photoinduced formation of emissive sub-band gap defect states happens, independently of the chemical composition of the lead halide semiconductor, which quenches the band-to-band radiative emission. Carrier trapping occurs in the subnanosecond time regime, while trapped carriers recombine in a few microseconds. Then, we show that the presence of oxygen, even in a very small amount, is able to compensate such an effect.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call