Abstract

Photosensitized electron transfer reactions between excited singlet acceptors and arylalkenes included within NaX zeolites have been studied using a combination of product studies, fluorescence spectroscopy, and diffuse reflectance laser flash photolysis. Steady-state and time-resolved fluorescence quenching of cyanoaromatic and ionic sensitizers by arylalkenes demonstrates that singlet quenching occurs predominantly by a static process. Diffuse reflectance flash photolysis studies indicate that quenching of singlet cyanoaromatic sensitizers by trans-anethole and 4-vinylanisole occurs via electron transfer and yields relatively long-lived radical cations. Signals due to trapped electrons (Na43+) are also observed, suggesting that photoionization of the cyanoaromatic sensitizer occurs in competition with electron transfer quenching of the excited singlet by the alkene. The long lifetimes of the radical cations indicate the utility of the zeolite environment for controlling the energy-wasting back electron ...

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call