Abstract
Understanding the photoinduced electron transfer (PET) mechanism is vital to improving the photoelectric conversion efficiency for solar energy materials and photosensitization systems. Herein, we visually demonstrate the PET process by real-time monitoring the photoinduced chemical transformation of p-aminothiophenol (p-ATP), an important SERS signal molecule, to 4,4'-dimercaptoazobenzene on single silver nanoparticles (AgNPs) with a localized surface plasmon resonance (LSPR) spectroscopy coupled dark-field microscopy. The bidirectional LSPR scattering spectral shifts bathochromically at first and hypsochromically then, which are caused by the electron transfer delay of p-ATP, disclose the PET path from p-ATP to O2 through AgNPs during the reaction, and enable us to digitalize the corresponding electron loss and gain on the surface of AgNP at different time periods. This visualized PET process could provide a simple and efficient approach to explore the nature of PET and help to interpret the SERS mechanism in terms of p-ATP.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.