Abstract

Pyrene linked to two β-CD (CD = cyclodextrin; PY = pyrene) molecules (CD-PY-CD) and methylviologen (MV2+) linked to two adamantane (AD) groups (AD-MV2+-AD) self-assembled in water to give toroidal nanostructures. Photoprocesses taking place in the femtosecond and nanosecond time ranges within the assembly are reported. Fluorescence of the pyrene chromophore was quenched in the toroid, suggesting very efficient electron transfer. Fast quenching of the pyrene fluorescence with a time constant of 6.85 ns was attributed to photoinduced electron transfer from pyrene to methyl viologen within the toroid assembly. Electron transfer leads to the formation of radical ion products, PY•+ and MV•+, which were identified in the nanosecond transient absorption spectra. Because of the close packing of chromophores, the radical ions undergo fast reactions with chromophores or similar ions in adjacent stacks to give dimeric products. Since the dimeric species are not very stable, the reactions are reversed at longer time scales to generate the radical ions, which then undergo back electron transfer and regenerate the starting materials.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.