Abstract

Photoinduced electron transfer from the amphiphilic oxacyanine (donor) to the amphiphilic viologen (acceptor) embedded on a DMPC matrix is investigated in the monolayer. Steady-state fluorescence intensity-area isotherms were measured simultaneously with surface pressure-area isotherms. In the absence of the acceptor, the fluorescence intensity normalized to surface density increased with an increase in surface pressure, which was suggested to be due to an increase in the lifetime of the excited state of the donor. Dimer formation of the donor is not found in the present case even at the donor density of 0.22 nm{sup {minus}2}, contrary to the LB film case where it is found at donor densities as low as 0.01 nm{sup {minus}2} with cadmium arachidate/methyl arachidate = 1/1 as a matrix. This shows the important role of the matrix in this type of work. In the presence of the acceptor, the relative fluorescence intensity decreases strongly with increasing surface pressure and molar fraction of the acceptor. This is due to the electron transfer from the excited state of the donor to the ground state of the acceptor. The relative fluorescence intensity depends on the densities of the donor and the acceptor and also on the lifetime of the excitedmore » state of the donor. The critical distance for the electron transfer is 0.9 nm at 2 mN m{sup {minus}1} and 1.5 nm at 40 mN m{sup {minus}1}. The close match between the observed and simulated values shows that the energy delocalization via incoherent exciton hopping is not significant in the present monolayer case as opposed to the LB film systems where the donor and acceptor are localized at the same interface. The discrepancy may be due to the larger values of the donor-to-acceptor ratio in the LB film case. 24 refs., 6 figs.« less

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.