Abstract

Intramolecular photoinduced electron transfer from a hydrazine unit to an aromatic group is studied by resonance Raman spectroscopy and electronic absorption spectroscopy. Substituted hydrazine functional groups have played an important role in studies of electron-transfer reactions, photoinduced intramolecular electron transfer, and of mixed valence. A prototypical compound, 2-tert-butyl-3-(anthracen-9-yl)-2,3-diazabicyclo[2.2.2]octane, that has the hydrazine-to-anthracene charge-transfer band in a region of the visible spectrum suitable for detailed resonance Raman spectroscopy is studied in detail. Excitation profiles are obtained, calculated quantitatively by using time-dependent theoretical methods, and interpreted with the assistance of molecular orbital calculations. Excited-state distortions are calculated. The largest distortions occur on the hydrazine unit; the normal mode showing the largest distortion (659 cm(-1), calculated at 665 cm(-1)) involves an out-of-plane C-N-N-C bend consistent with removing an electron from the N-N pi antibonding orbital. Anthracene ring-centered C-C stretches also are enhanced, consistent with populating an antibonding pi orbital centered on the ring. Excellent fits to all of the excitation profiles and to the absorption band are obtained using one set of excited-state potential surfaces.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.