Abstract

The first artificial donor-sensitizer-acceptor compound in which photoinduced long-range electron transfer is coupled to donor deprotonation and acceptor protonation is reported. The long-lived photoproduct stores energy in the form of a radical pair state in which the charges of the donor and the acceptor remain unchanged, much in contrast to previously investigated systems that exhibit charge-separated states comprised of electron-hole pairs. This finding is relevant for light-driven accumulation of redox equivalents, because it exemplifies how the buildup of charge can be avoided yet light energy can be stored. Proton-coupled electron transfer (PCET) reactions at a phenol donor and a monoquat acceptor triggered by excitation of a Ru(II) sensitizer enable this form of photochemical energy storage. Our triad emulates photosystem II more closely than previously investigated systems, because tyrosine Z is oxidized and deprotonated, whereas plastoquinone B is reduced and protonated.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call