Abstract

Photoinduced electron transfer between 2-methylanthraquinone (MeAQ) and triethylamine (TEA) in a room-temperature ionic liquid, 1-butyl-3-methylimidazolium hexafluorophosphate ([bmim][PF6]), was investigated by comparing the time-resolved electron paramagnetic resonance (TR-EPR) spectroscopy and the transient absorption spectroscopy. The results of TR-EPR spectroscopy, in which MeAQ was 8mmolL−1 and TEA was 150mmolL−1, indicated that the transient radical would exist longer time in [bmim][PF6] than in acetonitrile. At the delay time of 8μs after laser excitation, the TR-EPR signal transformed from an emissive peak into an absorptive peak when the experiment was performed in [bmim][PF6]. The results of the transient absorption spectroscopy, in which MeAQ was 0.1mmolL−1 and TEA was 2.2mmolL−1, showed that the efficiency and the rate of the photoinduced electron transfer reaction in [bmim][PF6] were obviously lower than that in acetonitrile. It was concluded that various factors, such as concentration, viscosity and local structural transformation of the solution, have an influence on the process of photoinduced electron transfer in [bmim][PF6].

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call