Abstract

Photoinduced voltages associated with surface plasmon polariton excitations are studied both theoretically and experimentally in various plasmonic systems as the function of material, wavelength, and type of structure. Experimental photovoltage normalized to the absorbed power shows a general decrease upon an increase in the wavelength, enhancement in the nanostructured samples, and a strong variation in the magnitude as a function of the material, which are not in line with the theoretical predictions of the simple plasmonic pressure approach. The results can be used for clarification of the mechanisms and further development of an adequate theoretical approach to the plasmon drag effect.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.