Abstract

A six-dimensional analytic potential-energy surface of the three valence states (N, V, Z) of ethene has been constructed on the basis of complete-active-space ab initio calculations and ab initio calculations with perturbation theory of second order based on a complete active reference space. The nuclear coordinate space is spanned by the torsion, the C–C stretch coordinate, the left and right pyramidalization and the symmetric and antisymmetric scissor coordinates. The C–H stretch coordinates and the CH2 rocking angles are kept frozen at their ground-state equilibrium value. A diabatic representation of the valence states of ethene has been constructed within the framework of a Hückel-type model. The diabatic potential-energy elements are represented as analytic functions of the relevant coordinates. The parameters of the analytic functions have been determined by a least-squares fit of the eigenvalues of the diabatic potential-energy matrix to the ab initio data for one-dimensional and two-dimensional cuts of the six-dimensional surface. As a function of the torsion, the analytic potential-energy surface describes the intersections of the V and Z states for torsional angles near 90°, which are converted into conical intersections by the antisymmetric scissor mode. As a function of pyramidalization of perpendicular ethene, it describes the intersections of the diabatic N and Z states, which are converted into conical intersections by displacements in the torsional mode. The analytic potential-energy surfaces can provide the basis for a quantum wave packet description of the internal conversion of photoexcited ethene to the electronic ground state via conical intersections.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.