Abstract

Formation of electronic nematicity is a common thread of unconventional superconductors. In iron-based materials, the long-range nematic order is revealed by the orthorhombic lattice distortion, which importance is a highly controversial topic due the small magnitude of the distortion. Here, we study the local crystal structure of FeSe and its interaction with electronic degrees of freedom using ultrafast electron diffraction, x-ray pair distribution function analysis, and transmission electron microscopy and find a significant lattice response to local nematicity. The study demonstrates how local lattice distortions, which exist even at temperatures above the nematic phase transition, can be released by photoexcitation, leading to an enhancement of the crystalline order. The observed local atomic structures and their out-of-equilibrium behavior unravel a sophisticated coupling between the lattice and nematic order parameter in FeSe.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call