Abstract

Hybrid organic-inorganic halogenidocuprates based on copper(I) represent materials with rich structural diversity and high photoluminescence (PL) quantum yield, yet the mechanism responsible for their efficient, strongly Stokes-shifted emission is still unclear. Here we report the successful preparation of (CH3NH3)4Cu2Br6 thin films with a zero-dimensional molecular salt structure featuring "isolated" [Cu2Br6]4- ions. Time-resolved broadband PL measurements provide an excited-state lifetime of 114 μs at 298 K. Results from femto- to microsecond UV-vis-NIR transient absorption experiments combined with DFT/TDDFT calculations suggest the formation of a long-lived structurally relaxed triplet species through intersystem crossing (61 ps), which almost exclusively decays by phosphorescence. In addition, time scales for structural relaxation and cooling processes are extracted from a global kinetic analysis of the transient spectra. Calculations for the isolated [Cu2Br6]4- anion and the (CH3NH3)4Cu2Br6 crystal suggest a strong impact of the crystal environment on the structure of the anion.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.